Techniques used by the UMCG division of experimental cardiology

Animal models and analysis

A number of animal and cell models are used to study cardiac function within the division of experimental cardiology, including intervention studies to investigate the effects of (new) drugs on cardiac function in disease models, and examining the role of specific genes in the development of cardiac diseases. An overview of the animal models currently in use is presented in Table 1. Cardiac function can be analysed using a number of techniques in our animal models. These include echocardiography (ECHO), electrocardiography (ECG), magnetic resonance imaging (MRI), and pressure/volume loop measurements (invasive). We can also determine specific cardiac parameters ex-vivo in a Langendorff perfusion system. Other parameters that can be examined include general metabolism using metabolic cages and glucose tolerance tests. We have a large number of standardized techniques for further molecular and histochemical analysis of cardiac tissue. These include quantitative real-time PCR (e.g. ANP, BNP), Western blot protein analysis, in particular post-translational modifications (e.g. phospho-Akt), histochemistry to determine cardiomyocyte size, capillary density and fibrosis, and immuno-histochemistry.

Table 1. Cardiac animal models

TechniqueUsed to studyKey characteristicsAnimalsReference
Permanent coronary artery ligationPost-myocardial infarction cardiac remodellingLarge scar formation, cardiac remodelling, reduced ejection fraction, transition to heart failure (12 weeks).Mouse, Rat(Yin et al, 2011)
Temporary coronary artery ligationIschemia reperfusion effectsReperfusion injury, scar formation dependent on ligation time.Mouse, Rat(Meems et al, 2012)
Transverse aortic constriction (TAC)Pressure overload (left)Left ventricle hypertrophy and fibrosis, transition towards heart failure (8 weeks)Mouse(Yu et al, 2012)
Abdominal aortic constriction
RAAS activation resulting in cardiac remodellingHypertrophy and fibrosis, neurohormonal activation (renin).Mouse(Kuipers et al, 2010)
Neurohormonal minipumps: 1. AngII; 2. Iso/PECardiac remodelling1. Hypertrophy and fibrosis, inflammation.
2. Hypertrophy and fibrosis, tachycardiomyopathy
Aorto-caval shuntVolume overload (right+left)Hypertrophy and dilatation of right and left ventricle, slow transition to heart failure (high output heart failure).Mouse(Borgdorff et al, 2012)
(Bartelds et al, 2011)
Pulmonary artery banding (PAB)Pressure overload (right)Hypertrophy (4 weeks) and fibrosis (8 weeks). Mouse, Rat(Borgdorff et al, 2012)
(Bartelds et al, 2011)
Running wheel exercisePhysiological hypertrophyCardiac hypertrophy without fibrosis, hypercontractility (physiological hypertrophy)Mouse, RatTo be published
Monocrotaline + shuntPulmonary hypertensionRV hypertrophy with dilatation (decompensation). Neointima lesions in pulmonary vessels. Rat(Dickinson et al, 2011)
MonocrotalinePulmonary hypertensionRV hypertrophy and limited dilatation (compensated), Media hypertrophy in pulmonary vessels.To be published
Ren2 hypertensive ratsHypertensive HF modelSevere hypertrophy and fibrosis, resulting in fast forward heart failure.Rat(de Boer et al, 2004)
(Yu et al, 2012)
Streptozotocin (STZ) injectionDiabetes type I modelDiastolic dysfunction and myocardial fibrosisMouseOngoing
High fat dietDiabetes type II modelInsulin resistance in skeletal and cardiac muscleMouseOngoing
Genetic mouse modelsMultipleDepending on the modelMouse(Yu et al, 2012)

Cell models and analysis

Our in vivo animal studies are complemented by in vitro cell studies. We can isolate and culture cardiomyocytes and cardiac fibroblasts (see Table 2). These cells can be treated with different agents to stimulate cardiomyocyte hypertrophy in vitro or induce collagen synthesis in cardiac fibroblasts. Using adenoviral vector systems, we can over-express or silence specific genes in these cells.

Table 2. Commonly used cell models

Cell typeUsed to studyReferences
Primary neonatal rat cardiomyocytesHypertrophy(Lu et al, 2012a, Lu et al, 2012b)
Adult rat cardiomyocytesCa2+ transients, IF- microscopy(Lu et al, 2012a, Lu et al, 2012b)
Mouse cardiac progenitor cellsCardiomyocyte differentiationOngoing
Neonatal rat cardiac fibroblastsFibrosis(Lu et al, 2010)
Adult cardiac fibroblastsFibrosisOngoing
HL-1 mouse cell lineCardiomyocyte model(Kuipers et al, 2010)



Bartelds B, Borgdorff MA, Smit-van Oosten A, Takens J, Boersma B, Nederhoff MG, Elzenga NJ, van Gilst WH, De Windt LJ, & Berger RM (2011) Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail 13: 1275-1282. DOI:10.1093/eurjhf/hfr134
Borgdorff MA, Bartelds B, Dickinson MG, Boersma B, Weij M, Zandvoort A, Sillje HH, Steendijk P, de Vroomen M, & Berger RM (2012) Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur J Heart Fail 14: 1067-1074. DOI: 10.1093/eurjhf/hfs094
de Boer RA, Pokharel S, Flesch M, van Kampen DA, Suurmeijer AJ, Boomsma F, van Gilst WH, van Veldhuisen DJ, & Pinto YM (2004) Extracellular signal regulated kinase and SMAD signaling both mediate the angiotensin II driven progression towards overt heart failure in homozygous TGR(mRen2)27. J Mol Med 82: 678-687. DOI: 10.1007/s00109-004-0579-3
Dickinson MG, Bartelds B, Molema G, Borgdorff MA, Boersma B, Takens J, Weij M, Wichers P, Sietsma H, & Berger RM (2011) Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol 179: 2199-2209. DOI: 10.1016/j.ajpath.2011.07.030
Kuipers I, Li J, Vreeswijk-Baudoin I, Koster J, van der Harst P, Sillje HH, Kuipers F, van Veldhuisen DJ, van Gilst WH, & de Boer RA (2010) Activation of liver X receptors with T0901317 attenuates cardiac hypertrophy in vivo. Eur J Heart Fail 12: 1042-1050. DOI: 10.1093/eurjhf/hfq109
Lu B, Mahmud H, Maass AH, Yu B, van Gilst WH, de Boer RA, & Sillje HH (2010) The Plk1 inhibitor BI 2536 temporarily arrests primary cardiac fibroblasts in mitosis and generates aneuploidy in vitro. PLoS One 5: e12963. DOI: 10.1371/journal.pone.0012963
Lu B, Tigchelaar W, Ruifrok WP, van Gilst WH, de Boer RA, & Sillje HH (2012a) DHRS7c, a novel cardiomyocyte-expressed gene that is down-regulated by adrenergic stimulation and in heart failure. Eur J Heart Fail 14: 5-13. DOI: 10.1093/eurjhf/hfr152
Lu B, Yu H, Zwartbol M, Ruifrok WP, van Gilst WH, de Boer RA, & Sillje HH (2012b) Identification of hypertrophy- and heart failure-associated genes by combining in vitro and in vivo models. Physiol Genomics 44: 443-454. DOI: 10.1152/physiolgenomics.00148.2011
Meems LM, Cannon MV, Mahmud H, Voors AA, van Gilst WH, Sillje HH, Ruifrok WP, & de Boer RA (2012) The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. J Steroid Biochem Mol Biol 132: 282-289. DOI: 10.1016/j.jsbmb.2012.06.004
Yin M, Sillje HH, Meissner M, van Gilst WH, & de Boer RA (2011) Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol 10: 85-2840-10-85. DOI: 10.1186/1475-2840-10-85
Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, van der Harst P, Pitt B, Goldstein IJ, Koerts JA, van Veldhuisen DJ, Bank RA, van Gilst WH, Sillje HH, & de Boer RA (2012) Genetic and Pharmacological Inhibition of Galectin-3 Prevents Cardiac Remodeling by Interfering with Myocardial Fibrogenesis. Circ Heart Fail 1: 107-117. DOI: 10.1161/CIRCHEARTFAILURE.112.971168